collapse

Αποστολέας Θέμα: Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )  (Αναγνώστηκε 2915 φορές)

Αποσυνδεδεμένος seismic

  • Participating Member
  • *
  • Μηνύματα: 6
    • E-mail
Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )
« στις: Κυριακή 15 Μάιος 2011, 19:40 »
Για σας φίλοι μου.  :smiley:
Είμαι νέος στο φόρουμ και σας χαιρετώ.
Δεν είμαι μαθηματικός, έχω τελειώσει την μέση εκπαίδευση, και είμαι εργοδηγός δομικών έργων.
Είμαι κάτοχος μιας αντισεισμικής ευρεσιτεχνίας, με την οποία ασχολούμαι τέσσερα χρόνια.
Ασχολούμαι ερευνητικά  με την δυναμική των κατασκευών.
Σας παρουσιάζω την μέθοδο και τον μηχανισμό της ευρεσιτεχνίας μου.
Θέλω την γνώμη σας, τις απορίες σας, και να κάνουμε μία ερευνητική συζήτηση.

http://www.antiseismic-systems.com/

Αντισεισμικό σύστημα τοποθετημένο σε φρεάτιο του φέροντα


Ο υδραυλικός ελκυστήρας δομικών έργων της εφεύρεσής μας καθώς και η μέθοδος εφαρμογής του στην κατασκευή δομικών έργων έχουν ως κύριο σκοπό την ελαχιστοποίηση των προβλημάτων που σχετίζονται με την ασφάλεια των δομικών κατασκευών στην περίπτωση αντιμετώπισης φυσικών φαινομένων όπως είναι ο σεισμός, οι ανεμοστρόβιλοι και οι πολύ ισχυροί άνεμοι. Σύμφωνα με την εφεύρεση, αυτό επιτυγχάνεται με μια συνεχή προένταση, (έλξη) του δώματος ενός μεγάλου ανεξάρτητου από τον φέροντα γεωμετρικού τμήματος της δομικής κατασκευής, προς το έδαφος, και του εδάφους προς την κατασκευή, κάνοντας αυτά τα δύο μέρη ένα σώμα «σάντουιτς».

Αυτή τη δύναμη προέντασης την εφαρμόζει ο μηχανισμός του υδραυλικού ελκυστήρα δομικών έργων, ο οποίος κατά κύριο λόγο αποτελείται από ένα συρματόσχοινο που διαπερνά ελεύθερο στο κέντρο τα κάθετα στοιχεία στήριξης της δομικής κατασκευής, καθώς και το μήκος μιας γεώτρησης, κάτω απ’ αυτά. Στο κάτω άκρο του το συρματόσχοινο είναι πακτωμένο με ένα μηχανισμό τύπου άγκυρας που με τη σειρά του πακτώνεται στα πρανή της γεώτρησης και δεν μπορεί να ανέλθει. Αυτή η πάκτωση γίνεται γιατί η οπή της γεώτρησης είναι κατά κάτι μικρότερη από την πλήρως ανοιγμένη εξωτερική διάμετρο του μηχανισμού της άγκυρας. Στο επάνω μέρος του, το συρματόσχοινο, είναι πάλι πακτωμένο με ένα υδραυλικό μηχανισμό έλξης ο οποίος το έλκει με μία συνεχή δύναμη ανόδου. Αυτός ο μηχανισμός έλξης αποτελείται από ένα έμβολο, το οποίο ολισθαίνει σε ένα χιτώνιο, που έχει από κάτω του, ένα θάλαμο πιέσεως. Η ασκούμενη στο συρματόσχοινο έλξη στο επάνω άκρο του από τον υδραυλικό μηχανισμό λόγω της υδραυλικής πιέσεως ανόδου του θαλάμου προς το έμβολο, και η αντίδραση σ’ αυτήν την έλξη που προέρχεται από την πακτωμένη άγκυρα στο άλλο άκρο του γεννά την επιθυμητή θλίψη στο δομικό έργο, το οποίο πακτώνεται στο έδαφος, ώστε να έχει αντοχή στις οριζόντιες δυνάμεις του σεισμού.



Τι κάνει η ευρεσιτεχνία ως καινοτομία:

Οι δυνάμεις του σεισμού (οριζόντιες και κατακόρυφες), ξεκινάνε να μεταφέρονται, από κάτω (τις βάσεις) προς τα πάνω, (φέροντα οργανισμό). Την οριζόντια και κατακόρυφη (τεκτονική) μεταφορά των δυνάμεων τού σεισμού προς τον φέροντα οργανισμό, την εκτελούν κατ’ ανάγκη οι κολώνες τού ισογείου μέσω των βάσεων, και με την βοήθεια των κόμβων, στον πρώτο όροφο, στην συνέχεια από τον πρώτο στον δεύτερο, και ούτω καθ εξής.

Όμως στην συνέχεια συμβαίνει το εξής παράδοξο:

Η πρώτη η μεσαία και η τελευταία πλάκες, κατά την ταλάντωση έχουν διαφορετικού μεγέθους διαδρομές, και διαφορετική φορά. Αυτό συμβαίνει, λόγω της μεμονωμένης αδράνειας των πολλαπλών πλακών, καθώς επίσης και της προσθετικής ελαστικότητας των κολονών του κάθε ορόφου, σε διαφορετικό χωροχρόνο, από κάτω προς τα πάνω.

Το αποτέλεσμα αυτής της καθυστερημένης μεταφοράς των δυνάμεων επιτάχυνσης, έχει ως αποτέλεσμα, οι πολλαπλές πλάκες να έχουν διαφορετικές πλάγιων κατευθύνσεων φορές, (λόγο μεμονωμένης αδράνειας της κάθε πλάκας, σε διαφορετικό χωροχρόνο). Κατ’ αυτόν τον τρόπο δημιουργούνται πρόσθετες ροπές, και διατμητικές τάσεις διαφορετικών κατευθύνσεων στους κόμβους των κολονών, οι οποίες και λόγω ελαστικότητας, τείνουν να παραμορφώσουν τον κάθετο άξονα του σκελετού, σε σχήμα S.

 

ΣΥΜΠΕΡΑΣΜΑ

Για τους παραπάνω λόγους, επιβάλετε να σταματήσουμε αυτή την κάθετη αξονική άναρχη ανάπτυξη πρόσθετων ροπών και διατμητικών τάσεων, προερχόμενη από τις οριζόντιες δυνάμεις που αναπτύσσονται στις πλάκες οι οποίες στην πλειονότητα των περιπτώσεων ευρίσκονται σε διαφορά φάσης μεταξύ τους ανάλογα με τον όροφο (ύψος). Αυτή η άναρχη ανάπτυξη λοιπόν δημιουργεί πρόσθετα προβλήματα στους κόμβους των κολονών.

Τα παραπάνω προβλήματαπρος επίλυση, της διάτμησης και των ροπών που δημιουργούνται στους κόμβους λόγωτης οριζόντιας(πλάγιας) επιτάχυνσης του σεισμού, και της άναρχης μετατόπισηςτου κάθετου άξονα του φέροντος οργανισμού, είναι πάρα πολύ μεγαλύτερα στους κόμβους των κολώνων του ισογείου.

Αυτό συμβαίνει λόγω ενός πρόσθετου προβλήματος, που δημιουργείται μόνο στους κόμβους της βάσης με τις κολώνες. Αυτοί οι κόμβοι δεν έχουν καμία ελαστικότητα, ώστε να μπορέσουν να μεταφέρουν ομαλά τις βίαιες διατμητικές δυνάμεις που τους επιβάλλονται από την πακτωμένη με το έδαφος βάση.

Το αποτέλεσμα είναι ότι αυτοί οι πρώτοι κόμβοι μεταφοράς των φορτίων που αναπτύσσονται από την δυναμική του σεισμού, που επιπροσθέτως φέρουν και αυξημένες θλιπτικές συνιστώσες, και σε συνδυασμό με την επιτάχυνση του σεισμού, να είναι οι πρώτοι που κόβονται σε ένα σεισμό, λόγο πρόσθετων διατμητικών τάσεων. Για τους λόγους αυτούς, επιβάλλεται σεισμική μόνωση των κόμβων αυτών, με την δημιουργία διπλής μονοκόμματης βάσης, και την τοποθέτηση ελαστομερών υλικών μεταξύ των.

Ένα άλλο μεγάλο πρόβλημα, είναι η μεγάλη τάση ανόδου εναλλάξ των πλευρών του φέροντα οργανισμού, προερχόμενη από την αύξηση της ταλάντωσης του κτιρίου. Αυτή η τάση ανόδου του φέροντα προκαλεί πρόσθετες ροπές σε όλους τους κόμβους, αναγκάζοντάς τους να τείνουν να αλλάξουν την υφιστάμενη μέχρι πρότινος γωνία τους, λόγω εξαναγκασμού τους στο να παραλάβουν τα πρόσθετα καμπτικά φορτία, του φέροντος οργανισμού.

Η προτεινόμενη λύση για την αντιμετώπιση των ανωτέρω αναφερθέντων προβλημάτων τα οποία δημιουργούνται στον φέροντα οργανισμό από τον σεισμό, συνοψίζεται στα εξής τρία σημεία:

Να δημιουργηθούν οι συνθήκες για ελεγχόμενη αξονική ταλάντωση του φέροντος οργανισμού.
Να βοηθηθούν οι κολώνες στην μεταφορά των οριζόντιων δυνάμεων του σεισμού, στις πλάκες, όχι μόνο από κάτω προς τα πάνω σε διαφορετικούς χωροχρόνους (διαφορά φάσης από πλάκα σε πλάκα ανάλογα το ύψος τοποθέτησης), όπως συμβαίνει στις σημερινές συμβατικές κατασκευές, αλλά και πλάγιο-αξονικά σε σχέση με τον κατακόρυφο άξονα προς όλες τις πλάκες ταυτόχρονα από μια προτεταμένη άκαμπτη κατασκευή (π.χ. φρεάτιο).
Να ενισχυθούν οι κόμβοι διαστασιολογικά και με πρόσθετο οπλισμό (ή προένταση) ώστε να αντέχουν στην διάτμηση.

Τα ανωτέρω επιτυγχάνονται με την τοποθέτηση ενός δομικού τμήματος της κατασκευής στο κέντρο του φέροντος οργανισμού, ανεξάρτητο και προτεταμένο με το έδαφος, μεγάλου γεωμετρικών διαστάσεων, και αρχιτεκτονικά αξιοποιήσιμο (ώστε να κατεβάσουμε το κόστος,) Αυτό μπορεί να είναι ένα φρεάτιο ανελκυστήρα, ή μία σταυροειδή κολώνα, ή ακόμα και ένα δωμάτιο

H προένταση αυτή που επιβάλει ο υδραυλικός ελκυστήρας, στο φρεάτιο και στο έδαφος, κατά κύριο λόγο γίνετε για να γίνουν αυτά τα δύο μέρη ένα σώμα, ώστε κατά την οριζόντια επιτάχυνση του σεισμού, το έδαφος, η βάση, και το δώμα του φρεατίου, να έχουν την ίδια φάση επιτάχυνσης, στον ίδιο χωροχρόνο.( σαν ένα σώμα με υψομετρική διαφορά )

Απαραίτητη προϋπόθεση για τα ανωτέρω άκαμπτα γεωμετρικά σχήματα είναι να έχουν αξονική κάθετη συνέχεια, σε όλο το ύψος του κτιρίου, και να είναι εξ’ ολοκλήρου από οπλισμένο προτεταμένο με το έδαφος σκυρόδεμα.

Όσο πιο μεγάλες είναι οι γεωμετρικές διαστάσεις της βάσης(εμβαδόν διατομής), σε σχέση με το ύψος, τόσο μεγαλύτερη είναι η αντίσταση στο πέλμα, καθώς και στην εμφανιζόμενη διάτμηση.

Αύξηση στην προένταση που τίθεται στο φρεάτιο, σημαίνει αύξηση στην αντοχή του στην διάτμηση, αύξηση στην συμπύκνωση των πρανών της γεώτρησης, και συνεπώς καλύτερη πάκτωση του μηχανισμού της άγκυρας.

Για να πετύχουμε την ανεξαρτησία του άκαμπτου φρεατίου από τον φέροντα, αφήνουμε ένα διάκενοανάμεσά τους. Αυτό το διάκενο χρησιμεύει για τους εξής λόγους:

να μην μεταφέρεται η δυναμική του σεισμού από το φρεάτιο στον φέροντα,
να παραμένει ο φέρων ανεξάρτητος στην σεισμική μόνωση που του προσφέρει η διπλή ραντιέφ βάση μακριά από το ταλαντευόμενο φρεάτιο,
να εξαντλεί ο φέρων τις μηχανικές αντοχές του υπάρχοντος οπλισμού του, (ώστε να μην μεταφέρει μεγάλες δυνάμεις κρούσης στο φρεάτιο), και λίγο πριν σπάσει, να γίνεται απόσβεση και να συγκρατείται ο φέρων, πάνω σε υδραυλικά συστήματα τοποθετημένα στο διάκενο του ανελκυστήρα, (ελαστικά, ή αποσβεστήρες),
να μην ακουμπάει ο φέρων οργανισμός επάνω στο φρεάτιο του ανελκυστήρα, ώστε να μεταφέρει τις πρόσθετες θλιπτικές δυνάμεις του βάρους του, καθιστώντας κατ’ αυτόν τον τρόπο δυνατή την εφαρμογή περαιτέρω δυνάμεων προέντασης στο φρεάτιο, ώστε να καταστεί αυτό πιο άκαμπτο.
να βοηθηθούν οι κολώνες στο να μεταφέρουν τις δυνάμεις του σεισμού, όχι μόνο κατακόρυφα, αλλά και πλάγιο-αξονικά στον ίδιο χωροχρόνο, με την βοήθεια του προτεταμένου άκαμπτου φρεατίου, και τους αποσβεστήρες.
 

Όλη αυτή η ελαστικότητα του κάθετου άξονα του φέροντος, μπορεί να είναι ελεγχόμενη, ώστε κατ’ αυτόν τον τρόπο να επιτυγχάνεται η ομαλή μεταφορά των ροπών του κάθετου άξονά του προς το φρεάτιο

Όταν θέλουμε τα επάνω πατώματα να πάλλονται περισσότερο από τα κάτω, μεγαλώνουμε το διάκενο των επάνω ορόφων, και θέτουμε λιγότερη πίεση στα υδραυλικά τους, σε σχέση με τα κάτω πατώματα.. Λειτουργώντας κατ’ αυτόν τον τρόπο, και προκειμένου να ελέγχεται η καμπτικότητα του κατακόρυφου άξονα προς αποφυγή της καταστρεπτικής μεταφοράς ροπών προς τα κάτω πατώματα υπολογίζεται στατικά η μεταφορά των ροπών κατά την διάρκεια της κρούσης των πλακών του κάθε ορόφου επάνω στο φρεάτιο και στη συνέχεια υπολογίζεται το κατάλληλο διάκενο μεταξύ των πλακών του κάθε ορόφου και της άκαμπτης δομής και εφαρμόζεται η ανάλογη υδραυλική πίεση στους αποσβεστήρες.

Για να ενισχύσουμε την ακαμψία της άκαμπτης δομής (φρεατίου), να μειώσουμε την ταλάντωση, να προλάβουμε την ανατροπή, και να αυξήσουμε την αντίσταση του φρεατίου στην διάτμηση που δημιουργείται από τις πλάγιες κρούσεις των πλακών προερχόμενες από την αδράνεια αυτών, είναι αναγκαίο να καταστήσουμε την άκαμπτη δομή ένα σώμα με το έδαφος.

Αυτό το πετυχαίνουμε με τον μηχανισμό του υδραυλικού ελκυστήρα δομικών έργων, εφαρμόζοντας προένταση μεταξύ του δώματος και του εδάφους, κάνοντας αυτά τα δύο μέρη ένα σώμα.

ΣΥΜΠΕΡΑΣΜΑ

Είναι λάθος να αφήνουμε τις κολώνες να μεταφέρουν μόνες τους από κάτω προς τα πάνω τις οριζόντιες δυνάμεις του σεισμού στον φέροντα σκελετό, όπως συμβαίνει σήμερα στην πλειονότητα των μεθόδων κατασκευής κτηρίων.

Οι οριζόντιες δυνάμεις του σεισμού δεν μεταφέρονται αβίαστα από τις κολώνες στον σκελετό, και τούτο διότι υπάρχουν άλλες δυνάμεις πού επενεργούν αντίθετα στη φορά των οριζόντιων δυνάμεων του σεισμού, προερχόμενες από την αδράνεια των πλακών με αποτέλεσμα να μην ανταποκρίνονται οι πλάκες άμεσα στην φορά των οριζόντιων δυνάμεων του σεισμού. Αυτή η αντίθεση των δυνάμεων επί του οριζοντίου άξονα της δομικής κατασκευής, δημιουργεί διατμητικές τάσεις, καθώς και ανομοιόμορφο λυγισμό σε σχήμα S (για τους λόγους που αναφέραμε ανωτέρω) παραμορφώνοντας τον κάθετο άξονα της κατασκευής, με τα γνωστά αποτελέσματα.

Εδώ έρχεται η ευρεσιτεχνία να βοηθήσει τις κολώνες να μεταφέρουν τις δυνάμεις του σεισμού ομοιόμορφα και ομαλά, όχι μόνο κατακόρυφα προς τα επάνω, αλλά και οριζόντια στις πλάκες, με την βοήθεια του υδραυλικού ελκυστήρα, του προτεταμένου φρεατίου, και των υδραυλικών αποσβεστήρων τοποθετημένων στο διάκενο.

Συμπερασματικά κατ’ αυτόν τον τρόπο, ο κατακόρυφος άξονας του σκελετού, διατηρεί την αρχική του μορφή, (και δεν παραμορφώνεται σε σχήμα S) λόγω ομοιόμορφης μετακίνησης της μάζας των πολλαπλών πλακών στον ίδιο χωροχρόνο που τους επιβάλει το προτεταμένο φρεάτιο, ανακουφίζοντας και βοηθώντας κατ’ αυτόν τον τρόπο τις κολώνες, στην μεταφορά των καταστρεπτικών δυνάμεων του σεισμού προς τις πλάκες. Δηλαδή, η ευρεσιτεχνία δημιουργεί ελεγχόμενη ευκαμψία, επί του κατακόρυφου άξονα του φέροντος, βοηθάει πλάγιο-αξονικά τις κολώνες να μεταφέρουν τις δυνάμεις του σεισμού στις πλάκες, αλλά ταυτόχρονα επιτυγχάνει και σεισμική μόνωση του οριζόντιου άξονα του φέροντα, (με διπλές μονοκόμματες βάσεις που φέρουν ελαστικά μεταξύ τους). Επιπλέον σταματάει και την μονόπλευρη τάση ανύψωσης του κτιρίου, προερχόμενη από την αύξηση του συντονισμού ταλάντωσης, η οποία εξαρτάται, από το ύψος του κτηρίου, την χρονική διάρκεια του σεισμού, καθώς και από το εύρος κύματός του. Όλα τα ανωτέρω βοηθούν στην αποτροπή της διάτμησης των κόμβων της οικοδομής.

Η υγροποίηση του εδάφους (καθίζηση) καθώς και οι ρωγμές, που προκαλεί ο σεισμός, είναι ένα μεγάλο πρόβλημα, το οποίο όμως και αυτό η ευρεσιτεχνία έχει εν μέρη λύσει.

 

Εάν σταματήσουμε το video       εκεί που δείχνει κάτω από το χώμα, θα παρατηρήσουμε ότι η άγκυρα έχει ένα σωλήνα, που ξεκινάει από την άγκυρα, και φτάνει μέχρι το κάτω μέρος της βάσης.



 

Αυτός ονομάζεται σωλήνας αντίστασης, και χρησιμεύει για τους εξής λόγους:

αποτελεί τη διέλευση του συρματόσχοινου, που εφαρμόζει την προένταση,
εάν υποχωρήσει το έδαφος κάτω από την βάση, τότε αυτός ο σωλήνας αντίστασης, παίρνει το βάρος της βάσης, και το μεταβιβάζει στα πρανή (πλαϊνά) της γεώτρησης (αυτός είναι ένας πολύ σοβαρός λόγος),
εάν τα πρανή της γεώτρησης υποχωρήσουν (από την ταλάντωση), το συρματόσχοινο δεν χαλαρώνει, γιατί η υδραυλική πίεση (κάτω από το έμβολο στο πάνω μέρος του συστήματος) προκαλεί το τάνυσμα του συρματόσχοινου που με τη σειρά του εγείρει αντίσταση στο κάτω έμβολο της άγκυρας, έτσι ώστε, να μπορούν να συνεργαστούν οι πείροι της άγκυρας και να δημιουργήσουν την επιθυμητή πάκτωση στα πρανή (πλαϊνά) της γεώτρησης.
λόγος που χρησιμεύει είναι να φέρνει αντίσταση στο κάτω έμβολο της άγκυρας, έτσι ώστε, να μπορούν να συνεργαστούν οι πίροι της άγκυρας ώστε να δημιουργήσουν την επιθυμητή πάκτωση στα πρανή (πλαινά ) της γεώτρησης.


« Τελευταία τροποποίηση: Κυριακή 15 Μάιος 2011, 19:48 από seismic »

Αποσυνδεδεμένος seismic

  • Participating Member
  • *
  • Μηνύματα: 6
    • E-mail
Απ: Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )
« Απάντηση #1 στις: Κυριακή 15 Μάιος 2011, 19:50 »
Τι κάνει η ευρεσιτεχνία, που δεν κάνει η εφαρμοσμένη τεχνολογία σήμερα.
Η εφαρμοσμένη τεχνολογία σήμερα απλός εδράζει την κατασκευή στο έδαφος.
Η ευρεσιτεχνία την ενώνει με το έδαφος, κάνοντας αυτά τα δύο  ένα, (σαν σάντουιτς)
Για μένα αυτή η ένωση της κατασκευής με το έδαφος, αλλάζει ευεργετικά την κατεύθυνση και το είδος των δυνάμεων, που εφαρμόζονται στην κατασκευή δυναμικά, κατά την διέγερση του σεισμού, και προκαλούν αστοχία.
Δυνάμεις που προκαλούν αστοχία στα κτήρια.
α) Οι δυνάμεις διάτμησης.
β) Οι ροπές στους κόμβους
Πως δημιουργούνται
1) ΔΥΝΑΜΕΙΣ ΔΙΑΤΜΗΣΗΣ
α) Οι δυνάμεις διάτμησης, δημιουργούνται κυρίως στα κάθετα στοιχεία στήριξης κατά την επιτάχυνση του σεισμού, λόγο αδράνειας της μάζας.
Ερώτηση.
Η διάτμηση είναι η ίδια σε όλα τα στοιχεία στήριξης?
Απάντηση
Όχι. Η διάτμηση είναι μεγαλύτερης ισχύος στα στοιχεία του ισογείου.
Ερώτηση. Γιατί?
Απάντηση
Για δύο κύριους λόγους.
α) Έχουν να διαχειριστούν (σε μετακίνηση) περισσότερα φορτία μάζας, που συνεπάγεται σε μεγαλύτερη αδράνεια, οπότε στην δημιουργία μεγαλύτερης  διάτμησης  στην διατομή κάτοψις του στοιχείου.
β) Λόγο ακαμψίας των στοιχείων του ισογείου.
Όλα τα άλλα στοιχεία στήριξης, ( εκτός του ισογείου ) έχουν κάποια ελαστικότητα στους κόμβους, και στα στοιχεία στήριξης, η οποία είναι ευεργετική, διότι απορροφούν ενέργεια του σεισμού, λόγο μετατροπής της ενέργειας αυτής, σε θερμότητα.

Αυτή η ευεργετική απορρόφηση ενέργειας,καταργείται κατά μεγάλο βαθμό στα στοιχεία του ισογείου, για ένα κύριο λόγο.
Διότι κάτω από το στοιχείο ( κολόνα ) του ισογείου υπάρχει η βάση, η οποία είναι άκαμπτη, (διότι είναι συνήθως μέσα στο έδαφος) και μεταδίδει ακέραια την επιτάχυνση του σεισμού. ( Οπότε και αυξημένες διατμητικές τάσεις )
Στα στοιχεία ( κολόνες ) των πάνω ορόφων δεν συμβαίνει το ίδιο, διότι το στοιχείο του κάτω ορόφου έχει απορροφήσει κάποια ενέργεια, μεταδίδοντας στον πιο πάνω όροφο μικρότερη ενέργεια.

 Σε συνδυασμό με τα αυξημένα φορτία της μάζας που έχει να διαχειριστεί, έχουμε αυξημένες κατά πολύ τις τάσεις ( δυνάμεις )
  διάτμησης στα στοιχεία του ισογείου.
Για τον λόγο αυτό, οι περισσότερες αστοχίες συμβαίνουν στο ισόγειο.
Αυτό το φαινόμενο μπορούμε να το λύσουμε αυξάνοντας την διατομή κάτοψης των στοιχείων του ισογείου.
Αν όμως το κάνουμε αυτό, έχουμε άλλο  πρόβλημα.

α) Χάνουμε την ελαστικότητα των στοιχείων. ( οπότε και την απόσβεση της επιτάχυνσης )

 
2) ΡΟΠΕΣ ΣΤΟΥΣ ΚΌΜΒΟΥΣ
Οι ροπές στους κόμβους, οι οποίες και αυτές καταλήγουν να καταπονούν τα κάθετα και οριζόντια στοιχεία στήριξης, με διατμητικές τάσεις, συμβαίνουν για τον εξής λόγο.
Κατά την επιτάχυνση του σεισμού, έχουμε την γνωστή αδράνεια του φέροντος οργανισμού, αλλά και την αδράνεια των φερόντων μαζών που έχουν να διαχειριστούν, και επιβαρύνουν με οριζόντιες διατμητικές τάσεις τα κάθετα στοιχεία.
Σε ένα πολυόροφο κτήριο, τα κάθετα στοιχεία, είναι ενιαία από τον πρώτο όροφο, μέχρι τον τελευταίο.
 Η δομική ακεραιότητα όλων των στοιχείων του φέροντος οργανισμού, ( κολόνες, δοκοί, πλάκες ) επιτυγχάνετε όταν αυτά ενωθούν στα κομβικά  σημεία      

Αυτά τα κομβικά  σημεία
  στην  αδράνεια του φέροντος οργανισμού, αντιδρούν με ροπές,  που καταπονούν με  διατμητικές τάσεις  τα κάθετα και οριζόντια  στοιχεία
Αν ο σχεδιασμός δεν είναι σωστός, καταλήγει σε αστοχία, του κάθετου στοιχείου, που είναι ψαθυρό, και όχι του οριζόντιου.
Ο λόγος είναι ότι το κάθετο στοιχείο, ( κολόνα ) έχει μικρότερη διατομή κάτοψις, σε σχέση με την δοκό, της οποίας η μάζα, καθ όλο το μήκος της αποτελεί δομική οντότητα με την πλάκα, οπότε υπολογίζεται σαν ενιαίο σώμα ισχυρότερη του κάθετου στοιχείου
Αν λάβουμε υπ’ όψιν ότι μία κολόνα φέρει επάνω της τουλάχιστον δύο δοκούς, καταλαβαίνουμε την διαφορά αντοχής ( ως προς την διάτμηση ) μεταξύ  της κολόνας, και των οριζόντιων στοιχείων στήριξης.


Κατά την ταλάντωση ενός ψιλού κτηρίου, αυτό έχει την τάση να σηκωθεί μονόπλευρα λόγο ροπής  δημιουργώντας ένα κενό κάτω από τις πίσω βάσεις.
Δηλαδή οι μπροστινές κολόνες προσπαθούν να σηκώσουν τις πίσω κολόνες, λόγο τις δομικής οντότητας που έχουν, και τους την προσφέρει η ένωσή τους με τις δοκούς
Αυτό το κενό, ακυρώνει την αντίσταση του εδάφους προς την βάση, οπότε η βάση, από εκεί που κράταγε το κτίριο μένει μετέωρη στον αέρα.
Βέβαια αυτό στην πράξη δεν συμβαίνει ποτέ, διότι τα στατικά φορτία της κατασκευής, κατά την μονόπλευρη άνοδό του, έρχονται να καθηλώσουν την κολόνα με την βάση στο έδαφος,δημιουργώντας ροπές στους κόμβους,

Αυτές οι ροπές,δημιουργούν λοξή  διάτμηση στην διατομή κάτοψης του κάθετου στοιχείου, το οποίο δεν αντέχει τα φορτία, και  έχουμε ψαθυρά αποτελέσματα, ακυρώνοντας την δομική οντότητα της κατασκευής.


Αυτά που εξήγησα φαίνονται καθαρά στα πρώτα λεπτά του πειράματος που έχω κάνει.

Στο πείραμα στα πρώτα λεπτά, βλέπουμε έναν ξύλινο φέροντα οργανισμό, ( σκελετό οικοδομής ) ο οποίος  κατά την αδράνεια ταλαντεύεται και σηκώνετε  μονόπλευρα, εναλλάξ.
Αυτό συμβαίνει διότι είναι ελαφρύς, και οι κόμβοι του αντέχουν τις ροπές, που δημιουργούνται από  το στατικό βάρος της αστήρικτης πλευράς του φέροντα οργανισμού.
Μόλις όμως του βάλουμε τα στατικά φορτία των δύο τούβλων, αυτός ναι μεν ταλαντεύεται, αλλά  οι βάσεις δεν σηκώνονται μονόπλευρα,
διότι οι κόμβοι δεν αντέχουν πια το πρόσθετο στατικό φορτίο των τούβλων.
ΛΥΣΗ
Εδώ από την ανάλυση που έκανα πάρα πάνω, βλέπουμε γιατί αστοχεί μία κατασκευή, όταν αυτή περάσει τα όρια σχεδίασης.
Δεν υπάρχει απόλυτος αντισεισμικός σχεδιασμός
Ο Ελληνικός αντισεισμικός κανονισμός έχει κάποια αντοχή, και από εκεί και πέρα υπάρχει μόνο η ψαθυρή αλήθεια.
Για μένα η αντοχή του έχει συγκεκριμένα όρια για τον λόγο που ανέφερα πάρα πάνω.
(Αυτό το φαινόμενο μπορούμε να το λύσουμε αυξάνοντας την διατομή κάτοψης των στοιχείων του ισογείου.
Αν όμως το κάνουμε αυτό, έχουμε άλλο πρόβλημα.

 Χάνουμε την ελαστικότητα των στοιχείων. ( οπότε και την απόσβεση της επιτάχυνσης ) )


Η ΛΥΣΗ ΠΟΥ ΠΡΟΤΕΙΝΩ
Φαίνεται και στην συνέχεια του πειράματος που σας παρέθεσα στο link, αλλά φαίνεται και σε αυτά που θα πω πάρα κάτω.
Υπάρχουν τρία  προβλήματα που πρέπει να λύσουμε,  για να εφαρμόσουμε προένταση μεταξύ εδάφους και δώματος,.... ή απλή πάκτωση του εδάφους με την κατασκευή.
α) Ο λυγισμός
β) Η αντοχή των υλικών.
γ) Η αντοχή του εδάφους
Για να δουλέψει ευεργετικά στον σεισμό η προένταση, ή η πάκτωση της κατασκευής με το έδαφος, χρειάζεται μεγάλη διατομή κάτοψις των στοιχείων στήριξης, και μεγάλη αντοχή υλικών, αν πρόκειται να εφαρμόσουμε προένταση, ώστε να έχουμε πρόσθετα τα ευεργετήματα αυτής, στα πλαίσια της επαλληλίας.
Αυτά τα δύο στοιχεία που χρειάζομαι μου τα προσφέρουν τα προκατασκευασμένα σπίτια, τα οποία είναι εξ ολοκλήρου από οπλισμένο σκυρόδεμα.
Το γ) πρόβλημα των χαλαρών εδαφών, μου το λύνει η κυτόστρωση, και ο ιδικός μηχανισμός του υδραυλικού ελκυστήρα, που βελτιώνει την αντοχή του εδάφους, και παρέχει πρόσθετη στήριξη στην βάση.

Κοίτα τη παθαίνει η συμβατική κατοικία.


Φαντάσου σπίτια ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΈΝΑ από οπλισμένο σκυρόδεμα, βιδωμένα στις τέσσερις γωνίες με την σεισμική βάση.......και ανάποδα να τα γυρίσεις δεν θα πάθουν τίποτα.
Ερώτηση
Όταν δεν τα βιδώσουμε με την βάση, τι θα πάθουν?
Απάντηση
Αν έχουμε ψιλά κτήρια εξ ολοκλήρου κατασκευασμένα από οπλισμένο σκυρόδεμα, αυτά θα αντέξουν  στην διάτμηση, αλλά οι κόμβοι τους θα έχουν αυξημένα φορτία, λόγο του κενού που αναφέραμε ότι δημιουργείται κάτω από την βάση κατά την ροπή αδράνειας, και λόγο μεγαλύτερου στατικού φορτίου που έχουν.
Ο συνδυασμός αδράνεια και στατικά φορτία, δημιουργούν τα λοξά κρακ στους τοίχους.
Για αυτό είναι λοξά τα κρακ, διότι ακολουθούν την συνισταμένη των δυνάμεων της αδράνειας και των στατικών φορτίον
Για τον λόγο αυτό, οι κατασκευές των προκατασκευασμένων είναι για λίγους ορόφους.
Αν όμως κάνουμε ένα σώμα το προκατασκευασμένο από οπλισμένο σκυρόδεμα με το έδαφος, http://postimage.org/image/r1aadhj8/
...δεν μπορεί να σηκωθεί μονόπλευρα, στην ροπή αδράνειας, οπότε, καταργούμε τις ροπές των κόμβων.

Υπάρχει και το οικονομικό μέρος.
Πιστεύω ότι αυτή η μέθοδος θα βάλει τα προκατασκευασμένα από σκυρόδεμα σπίτια, και μέσα στην πόλη.

Έως τώρα αυτά τα σπίτια είναι μόνο για εξοχικά.
Ο κύριος λόγος είναι ότι, ο νόμος δεν τους επιτρέπει, το ύψος τους να ξεπερνά τους δύο ορόφους.
Όταν όμως γίνουν άτρωτα στον σεισμό, και μπορούν να αντέχουν πολλούς ορόφους, τότε θα επιτραπεί  η δόμηση <τους> στην πόλη.

Τώρα δεν επιτρέπονται μέσα σε πόλεις, διότι αν στην πόλη επιτρέπετε να χτίσεις ένα δεκαόροφο, και το προκατασκευασμένο αντέχει δύο ορόφους, δεν σε συμφέρει να χάσεις τον αέρα για άλλους οκτώ ορόφους.

Αν όμως το κάνω να αντέχει, τότε θα καταργηθούν οι συμβατικοί τρόποι κατασκευής, γιατί τα προκατασκευασμένα είναι πιο φτηνά, 30-50% γιατί είναι βιομηχανοποιημένα.
Έτσι θα έχουν κέρδος οι βιομήχανοι από αυτή την αλλαγή.

Εκτός όμως από αντισεισμικό, η ευρεσιτεχνία μπορεί να χρησιμοποιηθεί και σαν προεντεταμένο αγκύριο, για την βελτίωση εδαφών
Π.Χ http://postimage.org/image/29l3p1xpg/
Διότι, και βελτιώνει την πυκνότητα των χαλαρών εδαφών, αλλά δεν αφήνει και το έργο να πάει ούτε πάνω,( στην ταλάντωση ) ούτε κάτω ( σε υποχώρηση του εδάφους )
Έχω αναφέρει τους τρόπους τοποθέτησης σε υφιστάμενα και υπό κατασκευή κτήρια, και άλλες κατασκευές, όπως φράγματα, γέφυρες, κ.λ.π
Κάνει και για την προστασία των ελαφριών κατασκευών από τους ανεμοστρόβιλους που πλήττουν κυρίως την Αμερική.
« Τελευταία τροποποίηση: Κυριακή 15 Μάιος 2011, 19:52 από seismic »

Αποσυνδεδεμένος seismic

  • Participating Member
  • *
  • Μηνύματα: 6
    • E-mail
Απ: Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )
« Απάντηση #2 στις: Δευτέρα 26 Μάιος 2014, 15:48 »
Όταν έκανα τα πειράματα, πολύ μηχανικοί είπαν πολλά θετικά, αλλά και πολλά αρνητικά για την έρευνα που έκανα.
Η επιτάχυνση των 1,77g x την κλίμακα του μοντέλου, 1 προς 7,14 που εφαρμόσθηκε στο πείραμα ήταν εξωγήινη.
Αυτό λέει πολλά αλλά όχι αρκετά, γιατί δεν ρώτησα τους βαρόνους, οπότε δεν μετράει.
Θα σας πω όμως το εξής.
1)Όταν έκανα αυτό το πείραμα που έφερε το σύστημα που προτείνω, αντέδρασε σε μία μεγάλη επιτάχυνση έτσι.

2)Όταν έκανα αυτό το πείραμα που δεν έφερε το σύστημα που προτείνω, αντέδρασε σε μία μικρότερη επιτάχυνση έτσι.
3)Όταν έκανα αυτό το πείραμα με επιτάχυνση των 1,77g x την κλίμακα του μοντέλου, 1 προς 7,14 που είναι = πάνω από 10g, και με λιγότερους τένοντες και μικρότερες διατομές στα κατακόρυφα στοιχεία, τα αποτελέσματα ήταν αυτά. 

2 ερωτήματα.

1) Αν το τρίτο πείραμα που είχε α) μεγαλύτερη επιτάχυνση από το πρώτο β) λιγότερους τένοντες γ) μικρότερες διατομές στα κατακόρυφα στοιχεία ....άντεξε 10g... τότε πόσα περισσότερα g επιτάχυνσης τα άντεχε το πρώτο πείραμα, που δεν υστερούσε ούτε σε τένοντες, ούτε σε διατομές?
2) Αν το τρίτο πείραμα άντεξε τόσο καλά με το προτεινόμενο σύστημα, θα αντέξει το ίδιο καλά αν αφαιρέσω το προτεινόμενο σύστημα?
Τι θα έχετε να πείτε μετά αν η δική σας μέθοδος αποτύχει?
Πέστε μου τώρα πριν κάνω το πείραμα.
Τα μοντέλα είναι τα ίδια, η μέθοδος αλλάζει.
Ναι..θέλω να ανατρέψω όλο το οικοδόμημα της στατικής, και το έχω ανατρέψει.
Περισσότερα http://www.green-e.gr/m/listing/view/-Antiseismiko-systhma

Αποσυνδεδεμένος seismic

  • Participating Member
  • *
  • Μηνύματα: 6
    • E-mail
Απ: Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )
« Απάντηση #3 στις: Σάββατο 02 Ιούνιος 2018, 16:13 »


1) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος περιορίζει τις μετατοπίσεις οι οποίες είναι υπεύθυνες για όλες τις εντάσεις πάνω στον φέροντα οργανισμό.
2) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος εκτρέπει τις ανοδικές εντάσεις της ροπής ανατροπής από το ανώτερο επίπεδο μεταβιβάζοντας αυτές ελεύθερα και απευθείας μέσα στο έδαφος και όχι πάνω στους κορμούς των φερόντων στοιχείων που οδηγούνται σήμερα με αποτέλεσμα μετά από ανελαστικές καμπυλώσεις των κορμών τους να αστοχούν.
3) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος εξουδετερώνει την πιθανότητα του συντονισμού ή αλλιώς την ιδιοπερίοδο.
4) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος εξαλείφει τον εφελκυσμό από τον κορμό σκυροδέματος.
5) Η προένταση των άνω άκρων των τοιχωμάτων με το έδαφος αυξάνει την ικανότητα ως προς την τέμνουσα βάσης και γενικά τις τέμνουσες εντάσεις
6) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος εξαλείφει την ροπή στους κόμβους.
7) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος εξαλείφει το ανασήκωμα του πέλματος της βάσης
8) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος περιορίζει ή εξαφανίζει την κάμψη ή αλλιώς καμπυλότητα των κορμών τους.
9) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος καταργεί τον μηχανισμό ορόφου και την κρίσιμη περιοχή αστοχίας
10) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος καταργεί τον μοχλοβραχίονα και τον μηχανισμό του υπομοχλίου.
11) Η πάκτωση των άνω άκρων των τοιχωμάτων με το έδαφος με την κατάλληλη διαστασιολόγιση περιορίζει ή εξαφανίζει τις στρεπτομεταφορικές παραμορφώσεις που παρατηρούνται στις υψίκορμες και ασύμμετρες κατασκευές.
12) Η πάκτωση του μηχανισμού στο έδαφος θεμελίωσης αναλαμβάνει τις ανοδικές και καθοδικές εντάσεις διότι αν το κάνει αυτό μπαίνει το ερώτημα τι τις θέλουμε τις μεγάλες βάσεις.
13) Αν υπάρχει υπάρχει καλύτερο αντισεισμικό σύστημα στον κόσμο και εάν δεν υπάρχει γιατί συνεχίζουν να σχεδιάζουν λάθος.
Αυτά μόνο για τον σεισμό διότι η ευρεσιτεχνία είναι ένα πολυεργαλείο για διάφορες δομικές εφαρμογές.
https://scontent.fath3-3.fna.fbcdn.net/v/t1.0-9/32349600_1994729227206690_3369841240341217280_n.jpg?_nc_cat=0&oh=a1f92a0ba4d48768ee0ecc10c557576e&oe=5BBC6444
Τι είναι αυτό που κάνει ξεχωριστή την πάκτωση του μηχανισμού της ευρεσιτεχνίας στο έδαφος και την καθιστά παγκοσμίως την ισχυρότερη πάκτωση πάνω σε μαλακά εδάφη.
Είναι η μόνος μηχανισμός παγκοσμίως ο οποίος εξασκεί πολύ μεγάλες απεριόριστες σε ένταση αξονικές πιέσεις προς τα πρανή της γεώτρησης με σκοπό να πετύχει 1) μεγαλύτερη πρόσφυση με το έδαφος 2) συμπύκνωση των μαλακών πρανών της γεώτρησης για την δημιουργία μεγάλης ζώνης επιρροής αντίδρασης του εδάφους ως προς τις ανοδικές και τις καθοδικές εντάσεις του μηχανισμού 3) την δημιουργία βαθουλωμάτων καθ ύψος λόγο συμπίεσης που σκοπό έχουν να δημιουργήσουν ένα μηχανισμό εγκλωβισμού του σκυροδέματος ανάμεσα στους θύλακες για μεγαλύτερη αντίδραση.

« Τελευταία τροποποίηση: Σάββατο 02 Ιούνιος 2018, 16:18 από seismic »

Αποσυνδεδεμένος seismic

  • Participating Member
  • *
  • Μηνύματα: 6
    • E-mail
Απ: Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )
« Απάντηση #4 στις: Σάββατο 02 Ιούνιος 2018, 16:24 »
Ένας σκελετός μιας οικοδομής αποτελείτε από τα υποστυλώματα ( κάθετα στοιχεία ) και τις δοκούς και πλάκες ( οριζόντια στοιχεία ) Οι δοκοί τα υποστυλώματα και οι πλάκες ενώνονται στους κόμβους. Όταν ο σκελετός είναι σε κατάσταση ηρεμίας, όλες οι φορτίσεις είναι κατακόρυφες. Όταν γίνεται σεισμός δημιουργούνται πρόσθετες οριζόντιες φορτίσεις στον σκελετό. Η συνισταμένες των οριζόντιων και κατακόρυφων φορτίσεων καταπονούν τους κόμβους, διότι αλλάζουν τις μοίρες των, δημιουργώντας πότε ανοικτές και πότε κλειστές γωνίες. Οι κατακόρυφες στατικές φορτίσεις ισορροπούν με την αντίδραση του εδάφους. Οι οριζόντιες φορτίσεις του σεισμού, λόγο ανασήκωσης που υφίστανται οι βάσεις των υποστυλωμάτων, και λόγο της ελαστικότητας που έχει ο κορμός τους, μετατοπίζουν τις καθ ύψος πλάκες με διαφορετικό πλάτος ταλάντωσης, και διαφορά φάσης. Δηλαδή οι πάνω πλάκες μετατοπίζονται περισσότερο από τις κάτω. Αυτές οι ιδιομορφές που παίρνει ο σκελετός είναι πάρα πολλές, τόσες όσες και οι διαφόρων κατευθύνσεων μετατοπίσεις του σεισμού οι οποίες παραμορφώνουν τον σκελετό, και αστοχεί. Το ιδανικό θα ήταν αν μπορούσαμε να κατασκευάσουμε έναν σκελετό οικοδομής ο οποίος κατά την διάρκεια του σεισμού να μετατοπίζει όλες του τις πλάκες με το ίδιο πλάτος ταλάντωσης που έχει το έδαφος, χωρίς διαφορά φάσης, διατηρώντας την ίδια μορφή κατά την διέγερση του σεισμού. Κατ αυτόν τον τρόπο δεν θα είχαμε καμία παραμόρφωση του σκελετού, οπότε καμία αστοχία. Η έρευνα που κάνω πάνω στον αντισεισμικό σχεδιασμό των κατασκευών αποσκοπεί ακριβώς σε αυτό. Αυτό το πέτυχα κατασκευάζοντας μεγάλα επιμήκη άκαμπτα υποστυλώματα με σχήμα κάτοψης, - , + , Γ , ή Τ στα οποία εφαρμόζω μία δύναμη σε όλα τα άκρατους στο δώμα, ( ώστε να δουλεύει όλη η διατομή σε αμφίπλευρες καταπονήσεις ) προερχόμενη από το έδαφος. Αυτή η δύναμη αποσκοπεί στο να σταματήσει αμφίπλευρα την στροφή των υποστυλωμάτων και την καμπυλότητα που δημιουργείται στον κορμό τους, οπότε και την παραμόρφωση που δημιουργεί την αστοχία σε όλο τον φέροντα. Στον σεισμό τα υποστυλώματα χάνουν την εκκεντρότητα ανασηκώνοντας την βάση τους, δημιουργώντας στροφές σε όλους στους κόμβους της κατασκευής. Για αυτό υπάρχει όριο εκκεντρότητας, δηλαδή όριο περιοχής της βάσης που ανασηκώνεται από την ροπή ανατροπής. Για να περιορίσουμε τις στροφές στη βάση βάζουμε ισχυρές πεδιλοδοκούς στα υποστυλώματα. Στα μεγάλα επιμήκη υποστυλώματα, (τοιχία) λόγω των μεγάλων ροπών που κατεβάζουν είναι πρακτικά αδύνατη η παρεμπόδιση της στροφής με τον κλασικό τρόπο κατασκευής των πεδιλοδοκών. Αυτό το ανασήκωμα της βάσης σε συνδυασμό με την ελαστικότητα έχει σαν αποτέλεσμα όταν το ένα υποστύλωμα του πλαισίου σηκώνει προς τα επάνω το ένα άκρο της δοκού, την ίδια στιγμή το άλλο υποστύλωμα στο άλλο άκρο της το κατεβάζει βίαια προς τα κάτω. Αυτό καταπονεί την δοκό με τάσεις στροφών διαφορετικής κατεύθυνσης στα δύο άκρα, παραμορφώνοντας τον κορμό της σε σχήμα S Την ίδια παραμόρφωση στον κορμό του υφίσταται και το υποστύλωμα, λόγο των στροφών στους κόμβους, και την διαφορά φάσης μετατόπισης των καθ ύψος πλακών. Για να σταματήσουμε τo ανασήκωμα της βάσης πακτώνουμε με τον μηχανισμό της ευρεσιτεχνίας την βάση με το έδαφος. Αν όμως θέλουμε να σταματήσουμε και το ολικό ανασήκωμα του δώματος του υποστυλώματος που προέρχεται από το ανασήκωμα της βάσης αλλά και από την ελαστικότητα του κορμού του, τότε το καλύτερο σημείο για την επιβολή αντίθετων τάσεων ισορροπίας είναι το δώμα. Αυτή η αντίθετη τάση στο δώμα πρέπει να προέρχεται από μία εξωτερική πηγή, και όχι εφαρμοζόμενη από τον ίδιο τον φέροντα. Αυτή η εξωτερική πηγή είναι το έδαφος κάτω από την βάση. Από εκεί αντλώ αυτήν την εξωτερική δύναμη Στο έδαφος κάτω από την βάση ανοίγουμε μια γεώτρηση, και πακτώνουμε ( με την βοήθεια της άγκυρας του μηχανισμού της ευρεσιτεχνίας ) στα πρανή της, και με την βοήθεια ενός τένοντα που περνά ελεύθερος μέσα από μία σωλήνα το υποστύλωμα, μεταφέρουμε αυτήν την δύναμη που πήραμε από το έδαφος, πάνω από το δώμα. Εκεί πάνω από το δώμα τοποθετούμε ένα στοπ με μία βίδα, για να σταματήσουμε την άνοδο του δώματος των επιμήκη υποστυλωμάτων, η οποία υφίσταται κατά τον σεισμό, και παραμορφώνει όλες τις πλάκες. Με αυτόν τον τρόπο ελέγχουμε την ταλάντωση όλης την κατασκευής. Δηλαδή την παραμόρφωση που προκαλεί την αστοχία. Κατ αυτόν τον τρόπο δεν έχουμε αλλαγές στην ιδιομορφία του φέροντα, διότι διατηρεί την ίδια μορφή που έχει πριν από τον σεισμό, και κατά τον σεισμό. Η αντίδραση του μηχανισμού στην άνοδο του δώματος των επιμήκη υποστυλωμάτων και η άλλη αντίδραση στο αντικριστό κάτω μέρος της βάσης των εκτρέπουν την πλάγια φόρτιση του σεισμού στην κατακόρυφη τομή των η οποία είναι μεγάλη και ισχυρή. Με αυτήν την εκτροπή της πλάγιας φόρτισης του σεισμού στην κατακόρυφη τομή των υποστυλωμάτων, καταργούνται οι στροφές στους κόμβους διότι τις πλάγιες φορτίσεις του σεισμού τις αναλαμβάνουν 100% τα επιμήκη υποστυλώματα, διότι αδυνατούν να στρέψουν τον κορμό τους.
Most popular papers in Open Journal of Civil Engineering ( The Ultimate Anti-Seismic System )
http://file.scirp.org/Html/6-1880388_59888.htm
http://www.scirp.org/journal/HottestPaper.aspx?JournalID=788

Αποσυνδεδεμένος seismic

  • Participating Member
  • *
  • Μηνύματα: 6
    • E-mail
Απ: Antiseismic-Systems - Earthquake Protection Systems ( seismic stop )
« Απάντηση #5 στις: Σάββατο 02 Ιούνιος 2018, 16:26 »
Το μοντέλο σε αυτό το πείραμα Από το 2,45 λεπτό μέχρι το 2,50 λεπτό δηλαδή μέσα σε 5 δευτερόλεπτα έκανε 20 διαδρομές των 25 cm... οπότε σε 20 sec έκανε 80 διαδρομές με πλάτος ταλάντωσης 25 cm. Αυτές τις ταλαντώσεις από το ένα άκρο στο άλλο μετράμε, και τον αντίστοιχο χρόνο τους σε sec. Η συχνότητα (Hz) είναι το κλάσμα: ν = αριθμός τέτοιων διαδρομών /αντίστοιχο χρόνο τους. 80/20=4Hz To 9,81 είναι η γήινη επιτάχυνση και την διαιρούμε με την επιτάχυνση που βρήκαμε για να βρούμε τα g Δηλαδή πόσες φορές είναι πιο γρήγορη η επιτάχυνση από ένα σώμα που πέφτει στην γη.
Σε φυσικό σεισμό που έκανα το πείραμα με πλάτος ταλάντωσης 0,25 cm και με συχνότητα 4 Hz έχουμε ... a=( -(2*π*4)^2 * 0,22 ) / 9.81
3,14χ2=6,28χ4=25,12X25,12=631,0144X0,22=157,754 /9,81= 16 g φυσικού σεισμού
Αυτή η επιτάχυνση που βγάλαμε είναι η επιτάχυνση ενός σεισμού φυσικού μεγέθους εξασκούμενη πάνω σε ένα μοντέλο υπό κλίμακα και για αυτόν τον λόγο οι τιμές της επιτάχυνσης είναι πολύ μεγαλύτερες. Πόσο πάρα πάνω είναι η επιτάχυνση στην μικροκλίμακα δεν μπορώ δεν ξέρω να την υπολογίσω?

Όταν κατασκεύαζα την βάση θέλοντας να προσομοιώσω το κύμα P το οποίο είναι και το ποιό καταστρεπτικό κύμα του σεισμού κατασκεύασα την κατασκεύασα έτσι ώστε η παλινδρόμηση της να επιτυγχάνεται πάνω σε μία ημιτονοειδή καμπύλη. Το πλάτος ταλάντωσης είναι 25 εκατοστά όταν μετακινώ την βάση με το χέρι χωρίς μέσα την ταχύτητα και χωρίς το βάρος του μοντέλου. Με την αδράνεια του μοντέλου και την επιτάχυνση μπορεί να γίνεται μια μικρή επιμήκυνση λόγο των ανοχών του τεντώματος και το παίζω της μηχανής 2 με 3 εκατοστά δηλαδή από 25 να γίνεται 28 εκατοστά.
Ακόμα η κυκλική ταλάντωση μεγαλώνει την μετατόπιση του δώματος Δηλαδή το δώμα μπορεί να έχει πλάτος ταλάντωσης 35 εκατοστά.


Σε αυτήν την επιτάχυνση των 16 g φυσικού πραγματικού σεισμού το μοντέλο δεν εμφάνισε αστοχίες οπότε δεν μπορούμε να ξέρουμε την πραγματική επιτάχυνση που αυτό αστοχεί.
Στην Ελλάδα υπάρχουν τρείς σεισμικές ζώνες επικινδυνότητας Α, Β, και Γ. Σκοπός του σύγχρονου αντισεισμικού κανονισμού είναι να κατασκευάσει δομές που στην πιο επικίνδυνη σεισμική ζώνη την Α οι κατασκευές να αντέχουν : ( 0,36 g επιτάχυνσης ) στην Β 0,24g και στην Γ 0,16g
Στην Ελλάδα ο μεγαλύτερος καταγεγραμμένος σεισμός είχε επιτάχυνση 1g
Παγκόσμια ο μεγαλύτερος καταγεγραμμένος σεισμός είχε επιτάχυνση 3g …στην Χιλή σε σεισμό εντάσεως 9,5 Ρίχτερ Η επιτάχυνση σε ( g ) είναι η ενέργεια του σεισμού που φτάνει τελικά κάτω από την κατασκευή. Τα Ρίχτερ μετράνε την ένταση στο επίκεντρο του σεισμού. Οι πολιτικοί μηχανικοί σχεδιάζουν βάση της επιτάχυνσης ( g ) όχι βάση των Ρίχτερ.

Το μοντέλο είχε επιτάχυνση πάνω από 16g μετρημένο μόνο κατά τον οριζόντιο άξονα ενώ είχε και μετατοπίσεις κρούσης πάνω κάτω ύψους 5 εκατοστών. οπότε τα συμπεράσματα της χρησιμότητας της μεθόδου της ευρεσιτεχνίας πειραματικά είναι συντριπτικά συγκρίνοντάς αυτά με τον σύγχρονο αντισεισμικό σχεδιασμό..

Το δοκίμιο στο πείραμα είχε γενική μάζα βάρους 880 kg Ο δεύτερος όροφος λόγο της ανεστραμμένης δοκού που φέρει είναι πιο πολλά κιλά από το μισό οπότε θα έλεγα ότι είναι περίπου 450kg και το ισόγειο είναι 430kg Άρα για να βρούμε την δύναμη αδράνειας F πρώτα στο ισόγειο λέμε ….
F=m.α 430 Χ 157,754 = 67834,22 Newton ή 68 kN.
και ο πρώτος όροφος 450 Χ 157,754 = 70989 Newton ή 71 kN.
Σύνολον δύναμης F ( Αδράνεια ) 68 + 71 = 139 kN
Ροπή Αδράνειας
Δύναμη Χ Ύψος ^2 άρα
Ισόγειο 68Χ0,67Χ0,67= 30,53 kN
Πρώτος όροφος 71Χ1,35Χ1,35 = 129,4 kN
Σύνολον Ροπή Αδράνειας 30,53+129,4 = 160 kN

Patent και στην Αμερική https://patents.google.com/patent/US9540783B2/en?oq=9%2c540%2c783
« Τελευταία τροποποίηση: Σάββατο 02 Ιούνιος 2018, 16:36 από seismic »

 

* Recent Posts

Πως να ξεκινήσω με το LaTeX; από mathgirl
[Χθες στις 22:07]


ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ από nef95
[Παρασκευή 20 Ιούλιος 2018, 22:54]


Θεμελιώδεις Έννοιες Μαθηματικών - Φυλλάδια Ασκήσεων από myownsavior
[Παρασκευή 20 Ιούλιος 2018, 00:22]


Γρίφος από nansy
[Κυριακή 24 Ιούνιος 2018, 19:13]


Antiseismic-Systems - Earthquake Protection Systems ( seismic stop ) από seismic
[Σάββατο 02 Ιούνιος 2018, 16:26]


Θεωρία αποφάσεων Bayes από Mathteacher
[Κυριακή 29 Απρίλιος 2018, 23:36]


latex βιβλιογραφία στα ελληνικά και στα αγγλικά από nansy
[Παρασκευή 20 Απρίλιος 2018, 16:57]


Άσκηση Στατιστικής - Κεντρικό οριακό θεώρημα από selas
[Τετάρτη 28 Μάρτιος 2018, 21:59]


Οδηγος Σπουδων ετος 2009-2013? από Alexandros
[Παρασκευή 09 Φεβρουάριος 2018, 22:40]


Θεωρια συνόλων από northon
[Παρασκευή 09 Φεβρουάριος 2018, 15:11]


θεωρια αυτοματων και τυπικων γλωσσων από Alexandros
[Παρασκευή 09 Φεβρουάριος 2018, 11:36]


Splatter/Horror/Thriller από Hyperion
[Κυριακή 04 Φεβρουάριος 2018, 16:34]